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The Schrodinger equation for non-relativistic quantum systems is derived from some
classical physics axioms within an ensemble hamiltonian framework. Such an approach
enables one to understand the structure of the equation, in particular its linearity,
in intuitive terms. Furthermore it allows for a physically motivated and systematic
investigation of potential generalisations which are briefly discussed.
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1. MOTIVATION

It is often stated that of the two departures from Newtonian physics at the
beginning of the twentieth century, relativity theory has a pleasing physical foun-
dation while quantum theory is grounded more in abstract mathematical structures.
Textbooks either quote the Schrodinger equation with little motivation or obtain
it as the description of state evolution in a particular picture: but the reason for
choosing states in a linear vector space in the first place is left unexplained.

Schrodinger’s original derivation, involving analogies with wave optics and
various limits, is now considered only of heuristic value as he was then still unaware
of the interpretation of the wavefunction as a probability amplitude rather than
a physical wave. However, with hindsight, we know that Schrodinger’s equation
may be re-written in more familiar terms through a change of variables; starting
from
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one performs a Madelung transformation (Madelung, 1926) ¥ = /p ¢/°/" which
decomposes the Schrodinger equation into two real equations,
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the summation convention being used unless otherwise stated and the overdot
referring to a partial time derivative. The first equation is a generalisation of
the classical Hamilton—Jacobi equation, the term with explicit % dependence,
the “quantum potential,” summarising the peculiar aspects of quantum theory.
If the quantum potential is ignored then the equations have a simple classical
interpretation: It is assumed that one is uncertain about the initial conditions so
that probabilistic methods must be used to describe the location of the particle.
With p(x,t) denoting the normalised probability density, the second equation
of motion above is the continuity equation with ¢ determining the velocity, v;,
through v; = (9;0)/m. What transforms the classical ensemble dynamics into
quantum mechanics is the quantum potential, the point of focus in the deBroglie—
Bohm picture (Bohm and Hiley, 2003; Holland, 1993).

However the structure of the quantum potential is unusual, making the quan-
tum Hamilton—Jacobi Equation (2) difficult to understand in purely classical terms.
Though some studies, such as those of Nelson (1966) and Markopoulou and Smolin
(2004), have been made to derive (2) from some stochastic micro-dynamics, the
assumptions either go beyond familiar classical physics or introduce additional
ingredients that raise new puzzles.

A somewhat different approach has been to start with the plausible classical
ensemble Hamilton—Jacobi equation, argue that it is incomplete, and then try
to constrain possible extensions by some consistency requirements. Two such
recent derivations are in Hall and Reginatto (2002) and Parwani (2005a). The
assumption of Hall and Reginatto was that the classical equation only described
the mean motion of the particles, and that the momentum of the particles have
some fluctuations about the mean value. It was postulated that those fluctuations
obey an exact uncertainty relation (Hall, 2001), and that the fluctuation term also
obeyed some axioms such as locality and separability. In Parwani (2005a) on
the other hand, the maximum uncertainty (entropy) principle (Jaynes, 1957a,b,
2004) was used, as suggested earlier in Reginatto (1998a,b) and Frieden (1989),
to constrain the probability distribution p(x, t). The constraint was implemented
through a lagrange multiplier and the unique uncertainty measure that accompanies
the lagrange multiplier was constructed from physically motivated axioms. The
end result in both approaches is that the classical Hamilton—Jacobi equation gets a
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contribution, the quantum potential, with Planck’s constant making its appearance
to balance the dimensions between the old terms and the new.

Once the quantum Hamilton—Jacobi Equation (2) has been obtained, it and
the continuity Equation (3) represent two coupled nonlinear differential equations
for the variables p, o. They can be uncoupled and linearised through the Madelung
transformation resulting in the usual Schrodinger equation and its complex con-
jugate. The meaning behind the Madelung transformation was explained in Hall
and Reginatto (2002): it is a change to a canonically conjugate set of variables that
would uncouple the equations.

Thus in both of the approaches (Hall and Reginatto, 2002; Parwani, 2005a),
only the extension of the classical equation was constructed from various axioms:
this still gives the impression that something extra and special must be imposed on
classical ensemble dynamics to arrive at quantum theory. However, as this paper
aims to demonstrate, one can proceed much further.

The primary purpose of this paper is to present a set of physical axioms that
can be used to construct the Schrodinger’s equation directly, without assuming the
classical ensemble Hamilton—Jacobi equation as the starting point, nor assuming
any specific underlying dynamics. For this a Hamiltonian framework for ensem-
bles, as discussed in Hall and Reginatto (2002) and Hall ez al. (2003), will be
used but the axioms will be refined from those used in Parwani (2005a). This
approach will achieve three goals: (i) It will show that it is possible to understand
the structure of Schrodinger’s equation in standard classical physics terms, (ii)
emphasize that one may arrive at a quantum theory without “quantising,” in one
way or another, some classical dynamics (which logically should be the limit of
the quantum theory) and (iii) provide an avenue for physically motivated exten-
sions of quantum theory that might be relevant for current studies of space at short
distances.

The axioms are listed and explained in the next section followed by the con-
struction of the ensemble hamiltonian in Section 3. The main differences between
Parwani (2005a) and this paper are discussed in the concluding section together
with some comments on potential generalisations of linear quantum theory. Some
technical issues concerning Galilean invariance and gauge-inequivalence are dis-
cussed in the appendices.

2. THE AXIOMS

We wish to describe the dynamics of N particles of which we do not have
sufficient information about the initial conditions, so that statistical methods must
be used to locate the particles. Note that even for a single particle, N = 1, one
has an ensemble dynamics. The discussion is being carried out for the general
multiparticle case so that the separability axiom can be discussed.
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Let p(x,t) denote the normalised probability density for the N particles,
with x summarising all the spatial coordinates. The following discussion will
use Cartesian coordinates in d 4+ 1 dimensions, with configuration space indices
i,j=1,2,...,dN.Herei =1, ..., d, refer to the coordinates of the first particle
of mass my,i =d +1,...,2d, to those of the second particle of mass m, and
so on. A diagonal and positive definite configuration space metric, g;; = 8;;/m ),
with the symbol (i) defined as the smallest integer > i /d, is assumed as in classical
dynamics (Reginatto, 1998a,b). That metric not only encodes information about the
inertia (mass) of the particles, which can be different, the indices allow contraction
with derivatives and enable a useful summary of the spacetime symmetries that
will be assumed below.

Let H be the ensemble hamiltonian depending on the normalised probability
density p(x, t) and let S(x, ¢) denote the canonically conjugate variable,

H= fdedp (h(p, S)+ V), 4)

with V some external potential influencing the particles’ motion. Hamilton’s
Equations are
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Since p is the probability density, the first equation will turn out to be the continuity
equation.

The objective is to construct an explicit form for i4(p, S) in (4) starting from
the following reasonable axioms:

e [AO] Hamiltonian: The existence of an ensemble hamiltonian of the form
(4), evolution determined by Hamilton’s equations, and a configuration
space metric with the stated properties, may be formalised in this opening
axiom.

e [A1] Locality: 4 should be a function of p, S, and their spatial derivatives.
That is, for example, & should not involve any integrals as that would
couple fields at distant points and create problems with causality. Note that
disallowing time-derivatives in & ensures that Hamilton’s Equations (5, 6)
have time-derivatives only on the left-hand-side.

® [A2] Separability: & should be separable for the case of two inde-
pendent sub-systems described by probability distributions p; and p;;
h(p = p1p2) = h(p1) + h(py) so that H itself can be written as the sum
of two independent terms. The factorisation of p for separable systems
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will affect how S behaves through Hamilton’s equations; it is sufficient for
consistency to require S = Sy + 5.

e [A3] Symmetry: The observed symmetries of nature should be included in
the description of the system. Since we are working in the non-relativistic
limit, the equations of motion should be form-invariant under the Galilean
group.? The translational part of this symmetry can be used to eliminate
any explicit dependence of & on x;, ¢ while rotational invariance will be
used as an explicit constraint in the construction below. However invariance
under Galilean boosts can only be imposed on the equations of motion,
rather than on £, as that involves transformations of the time-derivatives:
remarkably though, the equations that are obtained below, after imposing
the other conditions, are already invariant under boosts (see Appendix A).

e [A4] Universality: It is desirable to construct a hamiltonian that describes
universal dynamics, that is, 4 should be independent of V and any other
specific properties of the particles or their number except those encoded
in the configuration-space metric. An example of how this universality
constraint can be used is as follows: the normalisation of probability,
1=/ dx"¢p(x, 1), implies that the dimension of p(x, t) depends on the
dimension of the configuration space. Thus, as elaborated below, H can be
universal only if 4 is scale invariant, #(Ap) = h(p). This scale invariance
will ensure that the resulting equations of motion have a form independent
of the number of particles. Hamilton’s equations show that the scale-
invariance condition does not affect S.

It must be emphasized that universality as defined above implies much
more than simply the statement that the terms in . be independent of the
dimension of configuration space. For example, to compensate for the di-
mension of p one might just try using N powers of x, but since translational
invariance (for V = 0) disallows explicit dependence on x, one must re-
sort to derivatives. So consider the candidate 4 = p~!(3,3, - - - 3y log p):
its dimension is independent of the dimension of configuration space and
yet it is not scale invariant. However this example clearly does not lead to
universal dynamics because the form of the equations of motion change
as the number of particles changes, with higher-derivative terms appearing
with increasing N. This shows that imposing universality fully, as defined,
clearly disallows compensating the dimension of p with factors of x or
d/dx. Which means that H can be universal only if % is scale invariant, as
stated above.

A beneficial technical outcome from the scale invariance of 4 is that
one need not impose the normalisation condition on p in the hamiltonian

2 The symmetries refer to the case of vanishing external potential, V = 0.
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but rather postpone it to a latter stage, for example after solving the equa-
tions of motion.

e [A5] Positivity: The existence of a stable ground state requires that the
hamiltonian H be bounded from below for potentials V that are likewise
bounded. For this to be true for generic potentials, and thus lead to universal
dynamics, it is sufficient to choose / to be positive definite.

e [A6] Simplicity: The fewer arbirary parameters a scientific theory has,
the easier it can be falsified experimentally and so lead to suggestions for
improvement. Furthermore, if a simple theory is able to explain all the avail-
able data then one is more likely to accept it as something “fundamental”
rather than an intermediate phenomenological description. Indeed, a useful
working hypothesis in physics has been that fundamental laws should be
universal and simple.

Thus one would like to construct a hamiltonian that has a minimum
number of arbitrary constants. For example, the scale invariance of h
deduced in [A4] means that 2 must contain derivatives of p if it is to
depend on p. Rotational symmetry implies that at least two derivatives
would be required. Therefore one constraint is to let # contain not more
than two derivatives in any product of terms that appears in it. As each
derivative involves an inverse length, this condition obviously restricts the
number of new dimensional parameters, beyond the metric, that can appear
in the action. This specific implementation of the simplicity condition,
whereby not more than two derivatives appear in any product of terms,
will be referred to in brief as “absence of higher number of derivatives” or
“AHD.”

It is implicit in the foregoing discussion that one would like to con-
struct and describe some realistic dynamics and so the simplicity axiom
should be interpreted in that context. So, for example, the “simplest” sug-
gestion 4 = 0 is vacuous, and as we shall see later, the constant A in (12)
must be chosen to be non-zero for nontrivial dynamics. Thus clearly one
is searching for equations that have a minimum number of free parameters
and yet describe interesting dynamical systems. This approach, of starting
with the simplest nontrivial dynamics, allows for systematic extensions
that are briefly discussed in the concluding section.

3. CONSTRUCTION OF THE HAMILTONIAN

Using the axioms one may construct an explicit form for 2(p, S). Rotational
invariance and AHD imply that the building blocks of /7 must be

Wi, &;U1(3;U2)(0;U3) and g;;W20;0; W3, (7
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where the U;, W, [ = 1, 2, 3 are real functions of p, S only (and not also of their
derivatives). Separability restricts & to be linear in g;;:

h = Wi+ gi; (Un(0:U2,)(3;Usy) + W2y 0;0; W3p) (8)

where a possible additional index n is summed over.

Consider Wi (p, S). Scale-invariance implies it cannot depend on p, so W| =
W1(S). But now separability requires W; o S. However in general the final result
violates positivity of H and hence one concludes that W; = 0.

The terms involving W, and W3 cannot generically lead to a positive definite
density & and so by the universality axiom we must set those terms to zero.
Similarly, positivity of 4 in the general case (universality) implies U, = Us,
and U;, > 0 so that & becomes a sum of positive terms. (One can actually avoid
imposing the conditions in this paragraph and proceed as in Parwani (2005a), but
the discussion is more concise this way).

Hence
h = gijU1,(0; U2,)(3;Uap). )
Next, using the chain rule,
U =0 8U+8S8U (10)
1 - lp 8p l 8S E)

one can extract explicitly the derivatives of p, S in the above expression. Then
using the separability axiom one deduces, as in Parwani (2005a), that various
combination of terms must be just constants.

Thus

h = gi;(A@G:S)®;5) + B(@: log p)(d; log p)

+ Y bul@i(log p + a,$)(;10g p + a,5)), an

with a, # 0 and A, B, b, non-negative. The result has been written in a form that
emphasizes positivity. If one expanded out the terms in the sum over n, then the
non-cross terms can be combined with the A and B forms, giving new non-negative
coefficients A and B, and leaving cross-terms involving (; log p)(9;S) with a net
coefficient C = 2 ) a,b,. Although the equations of motion would only depend
on A, B, C one would still need to impose the positivity constraint which makes
C depend on A, B through the a,,, b,,.

Thus the dynamics appears to depend on the unlimited number of free pa-
rameters ay,, b,. The simplicity axiom encourages one to reduce this dependence,
in the first instance, by choosing b, = 0, thereby truncating 4 to

h = gij (A3 5)(9;5) + B(3; log p)(9; log p)) . (12)
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A consequence of this diagonal form for /4 is another simplification, for it leads to
the usual continuity Equation (14) where the particle velocities are independent
of any explicit dependence on the probability density p.

Since A must be non-zero for nontrivial dynamics, it can be absorbed in
a redefinition of the metric. The final result for / therefore depends only on a
single new universal parameter B with dimensions of action-squared. If B =
0 then one has classical ensemble dynamics generalising the usual Hamilton—
Jacobi description of classical mechanics. For nonzero B, the resulting Hamilton’s
equations are, in the conventional normalisation A = 1/2,

gy aipdip 200
$+ 855,50, +V + Bg; [ ZLAL UL _ o, (13)

2 p? p
p+ 89 (pd;S) =0. (14)

These real nonlinear equations can be combined and rewritten, via the inverse
Madelung transformation, as the standard Schrodinger equation when B is iden-
tified with 12/8,

. n?

Thus the same set of axioms have allowed us to obtain two theories: Clas-
sical ensemble dynamics for B = 0 in (12) and the non-relativistic (and linear)
Schrodinger equation for B > 0. The linear quantum theory is thus seen to be a
single parameter extension of the classical theory.?

4. CONCLUSION

A main result of this investigation is that one may derive and understand the
structure of Schrodinger’s equation using intuitive classical concepts and axioms.
In particular its linearity is seen to be a consequence of the other assumptions.
Unlike (Hall and Reginatto, 2002; Parwani, 2005a) where the quantum action was
obtained by extending a given classical action, here both the classical and quantum
dynamics were constructed from a single set of axioms.

Although the axioms used here appear similar to those used in Parwani
(2005a), there are a number of crucial differences that should be highlighted. While
positivity was used in Parwani (2005a) primarily to give the (inverse) uncertainty
measure a sensible interpretation, the axiom [ AS5] adopted here has been motivated
by the need for a Hamiltonian bounded from below. In Parwani (2005a) scale-
invariance of & was demanded as a sufficient condition for universality, while here

31t should be noted that if one of the b, in (11) were nonzero then counting the corresponding a,
means that one would have at least a two-parameter extension of classical dynamics, or equivalently
a non-linear Schrodinger equation.
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scale-invariance has been argued to be a consequence of the broader requirement of
universality. While the AHD condition was imposed in Parwani (2005a), here the
broader simplicity axiom has been used, of which AHD is a natural special case.
Finally, the axioms in Parwani (2005a) were imposed on the (inverse) uncertainty
measure that was added to the classical Lagrangian while here the axioms were
used to construct the ensemble Hamiltonian.

As is manifest in Section 3, the universality and simplicity axioms have
been used in ways that go beyond the related but narrower homogeneity and
AHD conditions that were used in Parwani (2005a). The broader conditions have
been adopted so as to accomplish the wider scope of the construction: the full
ensemble Hamiltonian in this paper versus a piece of the Lagrangian in Parwani
(2005a). Nonetheless, the more general axioms used here have a natural physical
interpretation, as discussed above, perhaps even more so than those used in Parwani
(2005a).

Further insight into the results of Section 3 can be obtained by enquiring
about the type of equations that would result if one abandoned one or more of the
axioms. For example, allowing higher number of derivatives of p enables terms
like (Parwani, 2005a)

hi(p) = gi;0;(log p + nf(p))ad;(log p + nf(p)), (16)

with f(p) = gu(9 log p)(0; log p) and n a constant. This %, satisfies all the con-
straints except AHD. Dimensional analysis shows that one must introduce a new
length scale associated with such nonlinearities. Requiring universality implies
that the nonlinear terms are associated with a universal length scale, a natural can-
didate being the Planck length. Thus in this way one sees a possible link between
gravity and nonlinear corrections to Schrodinger’s equation (Parwani, 2005b,c).
Such generalisations, and their interpretation in terms of short-distance physics,
are discussed at greater length in Parwani (2006) which also lists related literature.

A challenge is to extend the axiomatic construction to include fermions.
This might involve the use of additional mathematical structures like Grassmann
variables to summarise internal degrees of freedom, and a further refinement of
the axioms.

APPENDIX A: GALILEAN INVARIANCE

The equations of motion that follow from (11), for V = 0, are

. _ _ 0; pa; 20;0;
S+Ag”3,S3JS+ Bgij ( l;sz — pjp

) —CgijBiBjSzo, (Al)

1'7+2Agij 0; (p ajS)+Cgij8i8jp=0, (A.2)
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with A, B, C as defined earlier. One may wonder if demanding invariance of these
equations under Galilean boosts, which have not yet been imposed, yields any
constraints on the undetermined constants.

As the essential features are manifest already for a single particle in one space
dimension, consider that uncluttered case first. The relevant equations are
Y 7 2 2
S+ 2esp+ B <(3p2) - 28_p) ~ s, (A3)
m m\ p p m

24 c.,
p+—a(pasS)+ —a°p =0, (A4
m m

and one would like these equations to be form invariant under the transformation
t' =t,x’ = x — ut, with u the boost velocity. Since p(x, t)dx is the probability
of finding the particle in the region around x, it is required to be invariant under
coordinate transformations. But dx = dx’ and so one deduces that p'(x’, ') =
p(x, t) where p’ is the probability density in the primed frame.

The transformation of the coordinates induces an obvious transformation of
the derivatives: 9/0x’ = 9/dx and 9/0¢t' = 9/0¢ + ud/dx. Start with the continu-
ity equation in the primed frame and require it to have the same form as (A.4), that
is, with the unprimed quantities replaced by primed quantities. Then subtracting
the primed equation from the unprimed equation and solving for S’ gives the
transformation rule,

mux
S'(x', )= S(x,1) — EYE

m dx AS
" +ﬁf(t)/?+g(t), (AS)

where f, g are functions of ¢ to be fixed next.
Now compare the primed version of (A.3) with the unprimed version and use
(A.5) to conclude

f@) =0, (A.6)
mu2
g = J=1+¢, (A.7)

where ¢ is a constant. Thus the non-trivial transformation of S under Galilean
boosts has been determined: notice that the result is independent of B and C! The
independence from B is due to the fact that B multiplies terms in the equations
of motion which only depend on p and its spatial derivatives and those struc-
tures are invariant by themselves under boosts. The independence from C can be
understood as follows: The C = 0 equations are invariant under (A.5, A.6, A.7)
which depend explicitly on x only linearly. Thus the C term in the equations of
motion, which involves two spatial derivatives must be invariant under the same
transformation.
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Therefore one deduces that the transformation of the variables p, S un-
der Galilean transformations is the same in classical ensemble dynamics (B =
0, C = 0), in linear quantum theory (B # 0, C = 0), and in the nonlinear the-
ory with C # 0. The transformations do depend on the constant A but since
that is just a normalisation factor it can be removed by redefining the metric
(mass).

Recalling the Madelung change of variables, it is not surprisingly that the
transformation of S found above is precisely the transformation of the phase of
the Schrodinger wave function under Galilean boosts discussed, for example, in
Ballentine (1998). It should also be noted that the explicit linear dependence of S’
on the product ux is consistent with the interpretation of 9.5 /m as the velocity of
the particle mentioned in Section 1: it transforms correctly under boosts.

For the multidimensional case (A.1, A.2) the transformations of the coordi-
nates and derivatives under Galilean boosts are

t =1, (A.8)
X, =x; — ut, (A.9)
3 = o, (A.10)
B = 3 +u,d;. (A.11)

The metric g;; and probability density p remain invariant. Then, as above, one
deduces the transformation of S (setting for convenience A = 1/2),

Bijuil

S'(x' 1)y = S(x, 1) — gijuix; + )

I+ ¢, (A.12)

where g is the inverse metric with diagonal coefficients g;; = 1/g;; and zero oth-
erwise. The constant parameter ¢ actually represents the global gauge invariance
of the equations and corresponds to the conservation of probability.

APPENDIX B: GAUGE INEQUIVALENCE

Setting A = 1/2 and B = h?/8, one may re-write the coupled Equations
(A.1, A.2) in terms of the wavefunction y = ,/pe’S/ h

h = Hy + F(Y)y, (B.1)

with H; the usual Schrodinger Hamiltonian and F a nonlinear correction given by

F:C(Q@L—ﬁﬁ). (B.2)
p P
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The current
Ji = gijpd;S (B.3)
h * *
= 57 8ii (V0,9 — ya;v™) (B.4)
is that which appears in the continuity equation
p+0Ji =0. (B.5)

The Equation (B.1) belongs to a class of Galilean invariant nonlinear Schrodinger
equations obtained in Doebner et al. (1999). In terms of the structures R;, R4 that
are defined in Doebner et al. (1999),

F =—-C(Ry — Ry). (B.6)

One may ask if the nonlinear piece F' may be eliminated through some change
of variables in the Equation (B.1), leading to a physically equivalent linear equa-
tion. The results of Doebner et al. (1999) however show that for real nonlinearities
the only nonlinear Schrodinger equations that are equivalent, through a nonlin-
ear gauge transformation that keeps p(x, t) invariant, to the linear Schrodinger
equation are those for which the nonlinearity is proportional to the usual quan-
tum potential Q. Since the F term above is not proportional to Q, the nonlinear
Schrodinger equation (B.1) is not equivalent to a linear Schrodinger equation.

It must be emphasized that although the nonlinear equation with C # 0
belongs to the class considered in Doebner et al. (1999), the equation derived here
has some positivity constraints on the coefficients that come from the positivity
imposed on the ensemble Hamiltonian, as discussed in the text. Such constraints are
absent for the nonlinear equations in Doebner et al. (1999) which were constructed
using a different approach.
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